Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

8,19-Dimethyl-8,19-dihydro-8,19ethanoanthra[$\left.2^{\prime \prime}, 3^{\prime \prime}: 2,3 ; 6^{\prime \prime}, 7^{\prime \prime}: 2^{\prime}, 3^{\prime}\right] d i-$ 1,4-dioxino[5,6-b;5',6'-b']diquinoxaline

Bernardo Mascia* and Pierre Thuéry ${ }^{\text {b* }}$

${ }^{\text {a }}$ Dipartimento di Chimica and IMC-CNR Sezione Meccanismi di Reazione, Università 'La Sapienza', Box 34, Roma 62, P.le Aldo Moro 5, 00185 Roma, Italy, and ${ }^{\text {b }}$ CEA/Saclay, DSM/DRECAM/SCM (CNRS URA 331), Bâtiment 125, 91191
Gif-sur-Yvette, France
Correspondence e-mail: bernardo.masci@uniroma.it, thuery@drecam.cea.fr

Received 22 September 2004
Accepted 30 September 2004
Online 31 October 2004
The title compound, $\mathrm{C}_{34} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}$, results from the reaction of 2,3,6,7-tetrahydroxy-9,10-dimethyl-9,10-dihydro-9,10-ethanoanthracene with 2,3-dichloroquinoxaline. The molecule, which contains a binary crystallographic symmetry axis, comprises two planar 'wings' around a central bicyclic unit. The nonideal geometry of the latter evidences some strain, as in previous compounds with the same central core. Each molecule is involved in $\pi-\pi$ interactions with four of its neighbours, oriented upside-down, which results in the formation of sheets of tightly packed molecules.

Comment

We have previously reported the first crystal structure of a compound containing the tetrahydroxydihydroethanoanthracene unit, namely 2,3,6,7-tetrahydroxy-9,10-dimethyl-9,10-dihydro-9,10-ethanoanthracene bis(1,4-dioxane) solvate, (II) (Masci et al., 2002), as well as the structure of the octanuclear uranyl complex, (III), obtained from the corresponding tetracatecholate species (Thuéry \& Masci, 2003). The compound described here, (I), is built from the same central unit.

The asymmetric unit in (I) contains half a molecule, the other half being generated by the twofold axis bisecting the

(I)
ethane bridge (Fig. 1). The dihedral angle between the two aromatic rings bound to the central curved part of the molecule is $138.88(8)^{\circ}$, larger than in (II) [130.61 (4) ${ }^{\circ}$] and (III) [100.9 (6) ${ }^{\circ}$], the large deviation in (III) being due to the strain induced by uranyl coordination to form a cyclic assemblage. The dihedral angles between the same aromatic rings and the plane defined by atoms $\mathrm{C} 15, \mathrm{C} 16$ and their symmetry equivalents is $110.54(9)^{\circ}$ [114.64 (4) ${ }^{\circ}$ in (II)]. A search of the Cambridge Structural Database (CSD, Version 5.25; Allen, 2002) for structures containing the dihydroethanoanthracene fragment shows that these dihedral angles span very wide ranges, viz. 108.1-133.2 [mean value $123(5)^{\circ}$] between the two aromatic rings and $110.4-131.1^{\circ}$ [mean value $118(4)^{\circ}$] between the aromatic rings and the central plane. In the simplest compound in this family, 9,10 -dihydro-9,10-ethanoanthracene (or [2,3:5,6]dibenzocyclo[2.2.2]octa-2,5-diene), (IV) (Burrows et al., 1999), these angles are 124.7 and 118.3° (mean value), respectively. Thus, it appears that the shape of (I) is much flatter than any other in this family of compounds. This could be an effect of the intermolecular interactions governing the packing (see below). However, larger dihedral angles between the aromatic rings are encountered in systems in which the ethane bridge is absent, for example, in compounds containing the tetramethoxydihydroanthracene fragment [151.7 (Benetollo et al., 1990) and 153.3° (Guy et al., 1996)].

The fused dioxine and three aromatic rings of (I) are coplanar, with an r.m.s. deviation of $0.063 \AA$. The maximum out-of-plane displacements are observed for atoms $\mathrm{C} 4, \mathrm{C} 1$ and C5 [0.145 (3), -0.091 (3) and 0.090 (3) Å, respectively]; these atoms pertain to the aromatic ring bound to the central cyclohexadiene ring, which may indicate the strain in this part of the molecule related to the rather large dihedral angle indicated above. The two O atoms are also associated with rather large out-of-plane displacements [-0.088 (3) and $-0.080(3) \AA$] , whereas the displacements of the remaining

Figure 1

A view of the molecule of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Primed atoms are at the symmetry position $\left(-x, y,-\frac{1}{2}-z\right)$.
atoms do not exceed $0.06 \AA$. The dioxine ring is nearly planar (r.m.s. deviation $0.016 \AA$), as is usual when it is fused to two aromatic rings. The interatomic distances in the C1-C6 aromatic ring show the same (and even more pronounced) trend as seen in (II) and (IV), with the $\mathrm{C} 1-\mathrm{C} 2$ bond length being shorter than $\mathrm{C} 4-\mathrm{C} 5$ by $0.031 \AA$ (Table 1) $[0.015$ and $0.020 \AA$ in (II) and (IV), respectively].

The bond lengths in the pyrazine ring are also somewhat irregular, with a difference of $0.029 \AA$ between C7-C8 and C9-C10, and of $0.099 \AA$ (mean value) between the bond lengths on each side of both N 1 and N 2 . In the terminal aromatic ring, $\mathrm{C} 9-\mathrm{C} 14$, the $\mathrm{C} 11-\mathrm{C} 12$ and $\mathrm{C} 13-\mathrm{C} 14$ bond lengths are shorter than the others by $0.041 \AA$ (mean value). In the dioxine ring, the distances around atoms O 1 and O 2 are also non-symmetric, with a difference of $0.025 \AA$ (mean value). It may be noted that no other example of a compound containing such fused dioxine and pyrazine rings is present in the CSD, although the structures of three compounds with planar fused dioxine and pyridine rings have been reported (Piórko, Christie et al., 1994; Piórko, Christie \& Zaworotko, 1994; Troya et al., 2002).

As in compounds (II) and (IV), the geometry of the central bicyclic system in (I) evidences its strained nature. The rather long C15-C16 and C16-C16' bonds are comparable with their counterparts in (II) and (IV) [primed atoms are at the symmetry position $\left(-x, y,-\frac{1}{2}-z\right)$]. The 'exterior' angles $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 15$ and $\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 15^{\prime}$ [mean value 125.9 (6) ${ }^{\circ}$] are much larger than the 'interior' angles $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 15$ ' and $\mathrm{C} 5-$ C 4 - C15 [mean value 113.9 (7) ${ }^{\circ}$].

The packing in (I) brings upside-down molecules into close contact, albeit slightly offset, indicating the presence of $\pi-\pi$ interactions (Fig. 2). The pyrazine ring is involved in two such contacts. One of them involves the terminal aromatic ring of the molecule related by the symmetry operation $\left(\frac{1}{2}-x\right.$, $-\frac{1}{2}-y,-z$) [centroid-centroid distance $=3.590(2) \AA$, mean interplanar spacing $=3.22(2) \AA$, mean centroid offset $=$ $1.59 \AA$, dihedral angle $=1.2^{\circ}$ and shortest interatomic contact $=3.30 \AA$, which is shorter than twice the out-of-plane van der Waals radius of a C atom $(1.7 \AA)$]. The other involves the parallel pyrazine counterpart in the neighbouring molecule at $\left(\frac{1}{2}-x, \frac{1}{2}-y,-z\right)$ [centroid-centroid distance $=3.673(2) \AA$, interplanar spacing $=3.22 \AA$, centroid offset $=1.77 \AA$ and shortest interatomic contact $=3.25 \AA]$. Each molecule is thus linked to four of its neighbours and infinite sheets of mol-

Figure 2
A partial view of the packing in (I), with the $\pi-\pi$ interactions represented as dashed lines. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted. Primed atoms are at the symmetry position $\left(-x, y,-\frac{1}{2}-z\right)$, doubly primed atoms are at $\left(\frac{1}{2}-x,-\frac{1}{2}-y,-z\right)$ and triply primed atoms are at $\left(\frac{1}{2}-x, \frac{1}{2}-y,-z\right)$.
ecules parallel to the (101) plane are thus formed, successive sheets being held together by van der Waals interactions.

Experimental

A mixture of 2,3,6,7-tetrahydroxy-9,10-dimethyl-9,10-dihydro-9,10ethanoanthracene ($149 \mathrm{mg}, 0.50 \mathrm{mmol}$; Davidson \& Musgrave, 1963), 2,3-dichloroquinoxaline ($199 \mathrm{mg}, 0.10 \mathrm{mmol}$) and anhydrous $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ $(900 \mathrm{mg}, 2.8 \mathrm{mmol})$ in acetonitrile (11 ml) was stirred and boiled under a nitrogen atmosphere for 60 h . Extraction with chloroform, followed by column chromatography on silica gel with chloroform as eluant, afforded the pure product, (I), from ethyl acetate (yield $60 \mathrm{mg}, 22 \%$, m.p. $>633 \mathrm{~K}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 1.66(s$, $4 \mathrm{H}), 1.93(s, 6 \mathrm{H}), 7.03(s, 4 \mathrm{H}), 7.57\left(d d, 4 \mathrm{H}, J=6.0 \mathrm{~Hz}, J^{\prime}=3.5 \mathrm{~Hz}\right)$, $7.79\left(d d, 4 \mathrm{H}, J=6.0 \mathrm{~Hz}, J^{\prime}=3.5 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta$ 18.3, 35.4, 41.4, 110.1, 127.2, 128.8, 138.0, 139.1, 143.0, 144.9. Single crystals were obtained by slow evaporation of an ethyl acetate solution.

Crystal data

$\mathrm{C}_{34} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}$
$M_{r}=550.56$
Monoclinic, C2/c
$a=26.055(2) \AA$
$b=6.6734(12) \AA$
$c=14.523(2) \AA$
$\beta=94.788(8)^{\circ}$
$V=2516.4(6) \AA^{3}$
$Z=4$

Data collection
Nonius KappaCCD area-detector
diffractometer
φ scans
9551 measured reflections
2358 independent reflections
1196 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.064$
$w R\left(F^{2}\right)=0.167$
$S=1.03$
2358 reflections
191 parameters
H-atom parameters constrained
$D_{x}=1.453 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 9551
reflections
$\theta=3.1-25.7^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=100$ (2) K
Needle, colourless
$0.15 \times 0.05 \times 0.05 \mathrm{~mm}$

$$
R_{\mathrm{int}}=0.075
$$

$\theta_{\text {max }}=25.7^{\circ}$
$h=-31 \rightarrow 31$
$k=-8 \rightarrow 0$
$l=-17 \rightarrow 17$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0584 P)^{2}\right. \\
+0.367 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.24 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.31 \mathrm{e} \AA^{-3}
\end{gathered}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 1$	$1.395(4)$	$\mathrm{C} 6-\mathrm{C} 1$	$1.385(4)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.364(4)$	$\mathrm{C} 4-\mathrm{C} 15$	$1.523(4)$
$\mathrm{O} 2-\mathrm{C} 2$	$1.395(4)$	$\mathrm{C} 5-\mathrm{C} 15^{\mathrm{i}}$	$1.519(4)$
$\mathrm{O} 2-\mathrm{C} 8$	$1.375(4)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.442(5)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.286(4)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.413(5)$
$\mathrm{N} 1-\mathrm{C} 10$	$1.380(4)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.408(4)$
$\mathrm{N} 2-\mathrm{C} 8$	$1.278(4)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.372(4)$
$\mathrm{N} 2-\mathrm{C} 9$	$1.382(4)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.413(5)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.379(4)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.370(5)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.389(4)$	$\mathrm{C} 14-\mathrm{C} 9$	$1.412(4)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.386(5)$	$\mathrm{C} 15-\mathrm{C} 16$	$1.563(5)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.410(5)$	$\mathrm{C} 15-\mathrm{C} 17$	$1.533(5)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.381(4)$	$\mathrm{C} 16-\mathrm{C} 16^{\mathrm{i}}$	$1.553(7)$
C3-C4-C15	$126.3(3)$	$\mathrm{C} 4-\mathrm{C} 15-\mathrm{C} 5^{\mathrm{i}}$	$107.9(3)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 15$	$113.9(3)$	$\mathrm{C} 4-\mathrm{C} 15-\mathrm{C} 16$	$104.6(3)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 15^{\mathrm{i}}$	$125.5(3)$	$\mathrm{C} 5^{\mathrm{i}}-\mathrm{C} 15-\mathrm{C} 16$	$105.6(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 15^{\mathrm{i}}$	$113.8(3)$	$\mathrm{C} 16^{\mathrm{i}}-\mathrm{C} 16-\mathrm{C} 15$	$110.31(17)$

Symmetry code: (i) $-x, y,-\frac{1}{2}-z$.

organic compounds

All H atoms were introduced in calculated positions as riding, with $\mathrm{C}-\mathrm{H}=0.93(\mathrm{CH}), 0.97\left(\mathrm{CH}_{2}\right)$ and $0.96 \AA\left(\mathrm{CH}_{3}\right)$, and with $U_{\text {iso }}(\mathrm{H})=$ $1.2\left(\mathrm{CH}\right.$ or $\left.\mathrm{CH}_{2}\right)$ or $1.5\left(\mathrm{CH}_{3}\right)$ times $U_{\mathrm{eq}}(\mathrm{C})$.

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement and data reduction: $D E N Z O-S M N$ (Otwinowski \& Minor, 1997); structure solution: SHELXS97 (Sheldrick, 1997); structure refinement: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: HJ1027). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388
Benetollo, F., Valoti, E., Ceraulo, L. \& Lamartina, L. (1990). J. Crystallogr. Spectrosc. Res. 20, 173-178.

Bruker (1999). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Burrows, L., Masnovi, J. \& Baker, R. J. (1999). Acta Cryst. C55, 236-239.
Davidson, I. M. \& Musgrave, O. C. (1963). J. Chem. Soc. pp. 3154-3155.
Guy, A., Doussot, J., Falguières, A., Prieur, B. \& Bachet, B. (1996). Bull. Soc. Chim. Fr. 133, 1005-1010.
Masci, B., Nierlich, M. \& Thuéry, P. (2002). Acta Cryst. C58, o86-o87.
Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Piórko, A., Christie, S., Crook, M. \& Sampson, P. (1994). J. Heterocycl. Chem. 31, 717-723.
Piórko, A., Christie, S. \& Zaworotko, M. J. (1994). Acta Cryst. C50, 1544 1545.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Thuéry, P. \& Masci, B. (2003). Supramol. Chem. 15, 95-99.
Troya, C., Vidal, A., Brillas, E., Rius, J., Torrelles, X., Alemán, C., Casanovas, J. \& Juliá, L. (2002). New J. Chem. 26, 1308-1313.

